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modes for a thin-disc geometry 
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Abstract. The elastic eigenvalues associated with hydrogen density fluctuations near the 
critical point of a metal-hydrogen System have been evaluated approximately for the case 
of a thin-disc geometry. with a small but finite thickness. 

1. Introduction 

In metal-hydrogen systems which display an analogue of a liquid-gas transition (e.g. 
Pd-H and Nb-H), the hydrogen interstitials can be thought of as lattice gas particles 
[ 1 4 ]  with a very long-range interaction. There is a coherency regime in the phase 
diagram where the correlation length is of the order of the sample size. The hydrogen 
density in this region tends not to form abrupt gradients because of the high stressenergy 
involved, but varies in long-range fluctuations whose form and energy is determined by 
the geometry and the conditions at the surface 15-71, These fluctuations are called 
macroscopic density modes, and are the fundamental thermodynamic fluctuations of 
thesystem. Todetermine the free energy, and hence the thermodynamics,of the metal- 
hydrogen system at the critical point it is necessary to specify the characteristic energies 
of the critical fluctuations. 

Experiment has determined the presence of some of these modes in various sample 
geometries of N b H ;  by neutron radiography [a] in short cylinders. the Gorsky effect in 
foils[g],andthe broadeningofx-ray peaks [lo] inthindiscs. Itisdifficult todetermine the 
exact excitation energies and spinodal temperatures characteristic of each fluctuation. 
Exact calculations for a spherical system and for the general ellipsoidal system [5, 111 
have been done, as well as for an exactly two-dimensiond system [12, 131. It is worth 
commenting on the comparison with the (exact) analytical calculation for the general 
ellipsoid done by Maier-Botzel and Wagner, since a sufficiently oblate ellipsoid can be 
thought ofasadiscfor manypurposes.Thedifferencesbetween the boundaryconditions 
of a disc system, with two flat planar surfaces forming part of the surface, and those of 
an ellipsoid, with a smooth differentiable surface everywhere, are manifested in the 
formoftheeigenfunctionsandalsoin the valuesfortheeigenvalues[ll] andinequations 
(4.1) and (4.2) of this work. 

Some experiments on thin samples of Pd-H [14,15] are being done on samples with 
a small but finite thickness, so the possibility has to be considered that the characteristic 
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modes might be changed from the exactly two-dimensional case considered in [12,13]. 
To interpret the resuIts from such an experiment one requires accurate estimates of the 
spinodal temperatures for the modes in a sample of small but finite thickness, hence the 
motivation for the calculation presented here. The results of this calculation should, of 
course. be compatible with the details for the exactly two-dimensional system in the 
limit of infinitesimal thickness. 

This paper details the calculation of the characteristic energies of deformation of a 
particular geometry, the thin disc, assuming the elastic constants of the underlying 
matrix are known. Although the essentials of this calculation hold for coherent metal- 
hydrogen systems generally, specific parameters and conditions pertinent to the 
palladium-hydrogen system are used in this development. 

An exact solution for the three-dimensional elastic problem in cylindrical coordinates 
involves two coupled, non-orthogonal, Fourier-Bessel series. The elastic modes have 
therefore been approximated by asum ofspherical harmonics and the largest corrections 
due to edge effects modelled by a Bessel series. 

The form most often used for the elastic energy in metal-hydrogen systems is [5] 

M Sandys- Wunsch and F D Manchester 

E,, = {kb:W,,plru(r) - ~(r)P,g~&)l  dr (1.1) 

where the strain E"@ and elastic constants C,,,, are defined in the host lattice, p i s  the 
density of hydrogen atoms, and Pap is the force dipole tensor, which is a measure of the 
interaction of the lattice with a hydrogen defect. The stress tensor is given by 

and must satisfy the equations of equilibrium in a stress-free system 
u , ~  = Cwp,u&PL.(r) - P , g ~ ( r )  (1.2) 

a.o,b: = 0 (1.3) 
I l m U @  = 0 (1.4) 

at the boundary, with n, the normal to the surface. The energy may be rewritten 

E , ~  = t I E*#p,fip(r) b. (1.5) 

Since the Hamiltonian is linear in the density of hydrogen, the associated strain is some 
linear functional of the density distribution [5 ]  

W(r, r')p(r') dr'. (1.6) 

It is the eigenfunctions pll(r) of the kernel W that are the normal elastic modes of the 
system. The energy eigenvalues, defined by 

where p, is the amplitude of the density mode 
1 

Comparison of equation (1.5) and (1.8) shows that, when only one mode is excited, 
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pepE& = ulql(r). (1.10) 

The cubicsymmetry of the palladium lattice forces the forcedipole tensor to bediagonal, 
with all components equal. In addition, it is convenient to make the assumption of 
isotropyinorder toobtain asolution. Anisotropyin thelattice hastheeffectofdistorting 
the modes obtained from the isotropic equations [16], With the usual Lam6 constants 
the total stress for one mode may be written 

oeg = A G m p V .  U + p(a.up + a p e )  + PS,gp(r). 

A ,  5 A - P / w .  

(1.11) 

(1.12) 

This may be thought of as a stress-free system with a modified Lame constant Ill] 

One looks for sustainable deformations in the absence of external stresses. The cor- 
responding value for A' can then be used to work out the eigenvalue for the mode via 
equation (1.12). The characteristic energy of the fluctuation is related to the spinodal 
temperature as shown in section 5. 

2. Eigenvalues of a thin isotropic disc 

The Papkovich-Neuber formalism [5] for the displacement is used [17]: 

U = V(@ + p '  Y) - 2(2 - y p  (2.1) 

where y =  A / ( A  + p ) ,  4, and Y are harmonic functions, and p = r + z is the position 
vector in spherical polars, r is the radial vector in cylindrical coordinates. The spherical 
polars are used only for convenience when writing down the potential; the system to be 
studied is a cylindrical one. 

It is convenient to expand 4 and Y in terms of spherical harmonics, namely 
S * l  

4 = A,p'+'t"P\+lt,(cos 0)CoSfq (2.2) 

Y = 

n = O  
I t 1  

[C.P;:~(COS e)(icos iq t q? sin [p,) 
" = O  

+ ~,pi;:.(cos e)(icos iq - @sin Iq)]p'+'" 

+ E,~'+~P;+,(cos e) C O S I V ~  (2.3) 
where (p, 8, q )  are spherical coordinates, and the highest power of I ,  the cylindrical 
radius vector, in the dilation is dt2. 

These potentials describe displacements of odd panty along the z-axis; similar 
expressions can be obtained for variations of even partity: 

*tl 

4 = E A , ~ I + ~ " P { + ~ ( ~ O ~  e) cos iq 

Y = 

(2.4) 
"=O 

l t l  

(C~P\Z;,,- (i cos ip, + q? sin iq) + D . P / ; ~ _ ,  (COS e) (icos ip, 
n = O  
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Figure 1. Geometry and axes for the system considered. The ratio LIR is small relative to 
unity. 

Note first, that in either case the dilation A is given by 

A = 2 ( y -  1 ) V . T .  (2.6) 
The equations of equilibrium are automatically satisfied for zero-body forces in the 
interior of the system. The boundary conditions have two forms: at the flat surface of 
the disc, z = &L (see figure l),  

AA = 2 p J I u ,  = 0 (2.7) 
J , U ,  + a,u, = 0. (2.8) 

At the circular peripheral boundary, r = R .  the conditions are 

LA + zpa,~, = o 
a+ ,  + ( J v / r ) u ,  - ( u p / r )  = 0. 

(2.9) 
(2.10) 

The shear stress u , ~  will be neglected on both surfaces. Using equation (1.5), 

A&, = -4 1 Pp(r)E&, dr 
I' 

(2.11) 

where E:, is the change in strain in this approximation. By St Venant's principle this is 
localized near the surface in question; but then one may expect the strain caused by a 
shear force to have zero dilation. Further discussion of some of the approximations 
necessary for solutions in three dimensions can be found in Sokolnikov [NI, 

3. Details of the calculation 

The case of modes of odd parity in z will be treated first, In terms of the expression for 
U the boundary conditions at the flat surfaces become 
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There are 2s + 2 linear equations in the 4s + 4 coefficients of the various powers of r, 
which now separate out. Successive terms couple Legendre polynomials, the power of 
T decreasing in each case, the last term involving all the terms in the potentials (2.2) and 
(2.3). 

The 2s + 2 boundary conditions at r = R can be satisfied exactly for all but one power 
of z ,  there being remnant terms in the powers of rl-*zbt3, so that a Fourier-Bessel 
series needs to be added to complete the solution. 

Without considering the corrections needed to balance the terms of highest 
order in z 

0 = ( y  + 2s + 2)A(r). (3.3) 

Choosing the right-hand bracket to be zerocauses all boundary conditions to be satisfied 
without coupling between different terms in the series. The approximate solution for 
the eigenvalue (neglecting the remnant terms at the peripheral boundary) is then 

y" -2(s + 1). (3.4) 

The effect of the remnant forces is to induce additional strains decreasing away from the 
edge. It is appropriate to expand the correction to the potentials in terms of the modified 
Bessel functions 

W = Fhf,(kr.) sin kz cos lg? 
k 

with wave vectors k defined by 

k = ( n  + $)n/L 

(3.5) 

where n is an integer. We then have 

~ = E [ ~ k ( i c o s ~ p ,  -qsinlq)f,- I (kr) +H~(PCOSI~,  +qsin~p,)l, ,  , (kr)lsinkz. (3.7) 

With the values of k as chosen above, there is only one equation to be satisfied at the 
boundary z = -C L; 

O=xsinkL[k2f , (kR)Fk + Gk(ykI,(kR) + k*RI,_,(kRj) 

h 

k 

+ Hh(Ykl/(kR) + k*Rf,+, (W)]. (3.8) 

Note that as the stress decreases exponentially away from the circular boundary, it is 
sufficient to satisfy the equations at Y = R. 

The effect of the additional stresses will be felt in the elastic eigenvalue, so that the 
approximate form ofy given above will have a correction term. We make the ansacz that 
the next lowest power of z is also obtained from the series. Then 

l (1-  1) L: +.. . )  
y = - 2  s+t+- -  ( 2(s + 1) RZ (3.9) 

The values for the elastic energy eigenvalue are obtainable from this once the elastic 
constants for the (isotropic) matrix are known. 
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Flgure 2. Variation of the eigenvalue for the Grit four modes with non-trivial variation 

The even parity choice of potentials yields another set of linear equations in 
descending powers of r and 2 .  Another Fourier-Bessel series is needed to deal with 
boundary effects at r = R. The lowest order value for the constant yis 

(3.10) 

A Fourier-Bessel series must be used to correct for the edge effects; the next correction 
to the eigenvalue then becomes 

y = -2(s + 1). 

I ( /  - 1) (2s + 3 -GI 21 jjj-f.. L2 .]. (3.11) 

4. Summary 

Thegeometricconstant ycan beestimatedforathindisctohave the form (3.9)or(3.11) 
depending on the panty of the deformation in the axial direction. This gives for the 
elastic eigenvalue 

(4.1) 
I ( /  - 1) 

Y -  1 (s + 1)(2s + 3)' R' 

for the odd parity modes, and 

for the even panty modes. These values are shown in figures 2 and 3 as a function of L,/R 



Macroscopic densityfluctuations in Pd-H: I 2145 

MODE NUMBER . I  

Figure 3. Eigenvalue versus s for 1 = 0. both even and odd parity modes. 

and s respectively and in figure 4 the eigenvalues are given as a function of 1 for one 
particular (low value) choice of s. 

With each macroscopic mode may be associated a spinodal curve, at which the 
energy required to excite the mode goes to zero. With the non-elastic interaction terms 
represented by a Landau local free energy, 

Fo/V = kT(Eo + 4ap2 -k $p4 + . . .). (4.3) 
The coefficients in this expansion are in the usual Landau sense, U =  a(T - T J ,  /3 > 0. 
The variation in the free energy is 

3 

AF/V = t (kTa - w,)p: + . . .. (4.4) 
I= I 

The temperatures at which the energy associated with non-zero mode amplitude, p,. 
goes to zero, namely 

Tf = (W/kU)[1  - ( P  - P 2 1  (4.5) 
are the spinodal temperatures for the mode, and correspond to a curve in phase space 
where, in the absence of coupling between the modes, the fluctuation becomes excited 
spontaneously. Thus the critical fluctuations in this geometry of an isotropic lattice gas 
should be the predominant fluctuations at temperatures given by equation (4.5) with 
equations (3.10) and (3.12). The difference between this and an incoherent system, 
without the long-range interaction, should be demonstrable experimentally. 

It is of interest to make a comparison between the present calculation for a thin, 
coherent,metal-hydrogendiscand thatofMaier-Botzel and Wagner [ 1 1 1  for acoherent 
metal-hydrogen system in the form of an ellipsoid, from which they take the limiting 
result for an oblate ellipsoid to approximate a thin disc. For the ellipsoid, the calculation 
is analytic and the limiting form for an oblate ellipsoid is an approximation to a thin disc, 
whereas the present calculation uses approximations to calculate the eigenmodes for a 
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Figure 4. Eigenvalue versus I fors = 1. both even and odd parity modes. 

cylinder, the thin, two-dimensional disccorresponding to the limit ofvanishing cylinder 
height. The oblate ellipsoid has a continuous surface without the abrupt changes of 
the cylinder surfaces and the two approaches to the thin-disc problem reflect these 
differences in the solutions they provide. For the oblate ellipsoid [ l l]  the eigenvalues 
forthe limitingcaseofb/a--.O(b,aare thesemi-axesoftheeilipsoid)are,in thepresent 
notation 

(2L)(L + 3) + 2 
~lc l l ipsoid l  = p' + p [ (2L)(L + 3) + 3 

2(L - 1)(L + 4) + 6 - I  
%llipsmd) p + cc ] forLodd (4.7) 2 ( L - l ) ( L t 4 ) + 9  

with L being the eigenmode number. 

zero thickness are given by equations (3.1) and (4.2) above 
For the cylinder solution, the eigenvalues for the limiting case of a disc tending to 

~ ( C y l l n d e r )  = P2P + Pu(b + 2)/('s + 3. '  (4.8) 
for both odd and even parity modes, where s is an integer (equation (3.3)). For the 
ellipsoid solution, with L = 0 and 1 in equations (4.6) and (4.7), 

W O  = W I  = P'(h + $ U ) - '  (4.9) 
and this eigenvaluc energy corresponds to the degenerate constant hydrogen density 
and constant density gradient modes for which the energy may also be obtained from 
the cylinder solution with / = s = 0. The other limiting value for the surface modes, 

(4.IO) 

is the same for both the cylinder and oblate ellipsoid solutions and these limits are 
consistent with the calculations of Goldberg [13]. If we compare eigenvalues given by 

w ,  = P ( i  + p ) - l  
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Table 1. Values of w , . ~  (with LIR = 0.1). 
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W0.0 1.2% in units of 
%I = w,.i 1.213 1o-'ycv ,I 
wo.2 = w1.2 1.194 

-4 x 10Peven parity w ~ . :  - w,,.~ 
W ?  - w , , . ~  = -4 x IO-' odd parity 

the cylinder and the oblate ellipsoid solutionsfor the first eigenmode of the infinitesimally 
thindisc for which there are coherency stresses, we get 

w ~ . ~ / w , = ,  = (A + 0.80p)/(A + 0.92,~)  = 0.97 (4.11) 

using the values of the Lam6 constants quoted in paper 11. This shows the estimates 
to be quite close for the two methods of solution. although the respective spinodal 
temperatures are separated by about 15 K with Tcyl uppermost. For the higher eigen- 
modes of this disc the relationships between w L  and w, are similar, with the w, values 
being higher, although both solutions have the same limit w, for the highest eigenmode. 

For the higher eigenmodes obtained from the cylinder solution, where some finite 
thickness of the cylinder is assumed, there are two eigennumbers. s and I .  The value of 
s effectively defines the energy and I breaks the azimuthal degeneracy. To illustrate 
this we use an adopted value of P (3.3 eV) and the experimental values from 11: ,I = 
1.136 x 10" J m-3; p = 0.377 x 10" J m-z to display in table 1 the values of w , . ~  for a 
few of the higher eigenmodes. 

In choosing a value of P = 3.3 eV for the trace of the force dipole tensor we are using 
past estimates as a guide but keeping in mind the observations of Pick and Bausch [19] 
on the consistency of estimates of values for P from different experimental data sets. 
Thusweusean adoptedvalue until the matterofdiscrepanciesin Pvaluesismoreclearly 
resolved. 

From table 1 it is clear that the change in energy involved from considering azimuthal 
variationisverysmallcompared with the valueoftheenerg). forthe particulargeometry 
chosen ( L / R  = 0.1). Effectively, the family of modes with a commons value has one 
characteristic energy, though there is no actual degeneracy which could give rise to 
'mixing' of modes. For geometries with smaller L / R  values (experimentally, ratios of 
1/40 are readily attainable) inspection of equations (4.1) and (4.2) shows that the effect 
of the azimuthal variation on the energy eigenvalues is negligible and that such 'sheets' 
display eigenmodes essentially the same as those of an inlinitesimally thin sheet. Dif- 
ferences between the cylinder and the oblate spheroid solutions. as discused above, still 
remain, however. 
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